On the maximum capacity augmentation algorithm for the maximum flow problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Capacity Scaling Algorithm for The Constrained Maximum Flow Problem
The constrained maximum flow problem is to send the maximum possible flow from a source node s to a sink node t in a directed network subject to a budget constraint that the cost of flow is no more than D. In this paper, we consider two versions of this problem: (i) when the cost of flow on each arc is a linear function of the amount of flow; and (ii) when the cost of flow is a convex function ...
متن کاملAn Augmentation Algorithm for the Maximum Weighted Stable Set Problem
Edge projection is a specialization of Lovv asz and Plummer's clique projection when restricted to edges. A concept of augmenting sequences of edge-projections is deened w.r.t. a stable set S. It is then proved the equivalence between the optimality of S and the existence of an augmenting sequence w.r.t. S. This result is then exploited to develop a new tabu-search heuristic for the MaximumStab...
متن کاملOn a capacity scaling algorithm for the constrained maximum flow problem
The constrained maximum flow problem is to send the maximum possible flow from a source node s to a sink node t in a directed network subject to a budget constraint that the cost of flow is no more than D. In this paper, we consider two versions of this problem: (i) when the cost of flow on each arc is a linear function of the amount of flow; and (ii) when the cost of flow is a convex function ...
متن کاملThe maximum flow problem
In this network we have two special vertices: a source vertex s and a sink vertex t. Our goal is to send the maximum amount of flow from s to t; flow can only travel along arcs in the right direction, and is constrained by the arc capacities. This “flow” could be many things: imagine sending water along pipes, with the capacity representing the size of the pipe; or traffic, with the capacity be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1993
ISSN: 0166-218X
DOI: 10.1016/0166-218x(93)90148-h